An international team attempts to gain a better understanding of fusion reactors
By Edsel Cook // Sep 16, 2018

Researchers from around the world have come to the university town of Greifswald, Germany to run tests on one of the biggest and most complex fusion reactors ever built. Their latest experiment campaign could help speed up the predicted timetable for practical fusion power, an article in Science Daily stated.

Brighteon.TV

The Wendelstein 7-X stellarator is the pride and joy of the Max Planck Institute of Plasma Physics in Greifswald. It is the biggest example of its kind, a stellarator being a type of fusion reactor that has gained new interest in recent years.

In addition to their current batch of new experiments, the international research team is also reviewing data from the first experiment campaign in 2016. Together with the findings of their new campaign, they hope to better understand the still-obscure science of thermonuclear fusion.

The study's author, Shaocheng Liu, published his team's findings in the science journal Physics of Plasmas. In the report, he and his teammates presented the first detailed description of the turbulent plasma found at the outer edge of the stellarator. (Related: MIT researchers working on a nuclear fusion superconductor that will generate carbon-free limitless energy within 15 years.)

Plasma turbulence in fusion reactors could be key to practical electric production

The Wendelstein 7-X reactor works by bringing ionized helium up to 122 million degrees Fahrenheit (50 million degrees Celsius). The incredibly hot helium is then contained by powerful magnets made from superconductors that are kept at a very cold -454 million degrees F (-270 million degrees C).

The superconducting magnets generate magnetic fields that are shaped like helices. This magnetic toroid traps the helium ions within it.

The designers of the Wendelstein 7-X took great care in optimizing the fields that comprise the toroidal shape. High-speed charged particles cannot penetrate its surface.

However, the heated plasma confined within the magnetic toroidal field often undergoes turbulence. These disturbances send heat and particles moving across the surfaces of the toroid. Eventually, the disturbed particles will hit the first wall that envelops the plasma.

A better understanding of the traits of the disruptive turbulence would lead to the creation of more practical fusion reactors that can produce electrical power. While it is very advanced, the Wendelstein 7-X remains an experimental device, a stepping stone to a full-fledged design.

"Particles need to be transported to the target, to the outside, and this edge region is very important for particle confinement," wrote Liu in the report.

First ever measurements of plasma turbulence in new stellarator

In their experiment, Liu's team took the first-ever measurements of the plasma turbulence at the edge of the stellarator. They used a combined probe head on the multi-purpose manipulator of the reactor to determine the characteristics of this scrape-off layer.

They reported three items of interest about the plasma turbulence. The first is that the turbulence appeared to propagate in the same direction that the helium ions took.

The second is that the spectrum of the turbulence covers the broadband range of frequencies between 240 and 380 kHz. While much lower in terms of fluctuation power than that in the dominant frequency, it also has higher cross-correlation coefficient.

Last but not least, the characteristics of the turbulence changes to match any alterations in the magnetic arrangement found at the edge of the stellarator.

"At the beginning we knew nothing about turbulence behaviors in the Wendelstein 7-X because it's a completely new device," Liu remarked. His team quickly learned that they had to consider every single factor in the nuclear reactor when designing their multi-part probe because the 3D structures affected the behavior of the plasma turbulence.

For more articles about fusion technology and other technological advances, see NewEnergyReport.com.

Sources include:

ScienceDaily.com

AIP.SciTation.org



Take Action:
Support NewsTarget by linking to this article from your website.
Permalink to this article:
Copy
Embed article link:
Copy
Reprinting this article:
Non-commercial use is permitted with credit to NewsTarget.com (including a clickable link).
Please contact us for more information.
Free Email Alerts
Get independent news alerts on natural cures, food lab tests, cannabis medicine, science, robotics, drones, privacy and more.

NewsTarget.com © 2022 All Rights Reserved. All content posted on this site is commentary or opinion and is protected under Free Speech. NewsTarget.com is not responsible for content written by contributing authors. The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. NewsTarget.com assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms and those published on this site. All trademarks, registered trademarks and servicemarks mentioned on this site are the property of their respective owners.

This site uses cookies
News Target uses cookies to improve your experience on our site. By using this site, you agree to our privacy policy.
Learn More
Close
Get 100% real, uncensored news delivered straight to your inbox
You can unsubscribe at any time. Your email privacy is completely protected.